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A FCT Method for Staggered Mesh
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A finite difference method on a staggered mesh for shock
hydrodynamics with diffusion controlled via flux corrected transport is
described. The algorithm is conservative, free streaming invariant and
well behaved around shocks. This method is second order in accuracy
in the worse case with several third- and fourth-order features. The
algorithm is designed in Lagrangian coordinates and an arbitrary mesh
can be used when remapping with piecewise parabolic method.
© 1993 Academic Press, inc.

1. INTRODUCTION

Lagrangian finite difference codes have been succesfully
used over many years for hydrodynamic simulations with
strong shocks. The artificial viscosity introduced is usually
a first- or second-order [!] diffusion term, with high
enough coefficients chosen to assure low amplitude oscilia-
tions behind shocks. This leads to excessive spreading of the
shock profile. To reduce the amount of added numerical
diffusion, while maintaining the positivity of the algorithm,
flux corrected transport (FCT) [2, 3] is often used. The
resulting scheme is less sensitive to the numerical value of
the diffusion coeflicient, it is higher in order and, in general,
more accurate. This article introduces FCT in classical
Lagrangian codes with a staggered mesh. Unfortunately,
attempts to use FCT directly have not worked properly for
all the cases we have tested. With FCT alone, an explicit
diffusion has to be introduced, which fails the FCT criterion
of no new maximum or minimum when a staggered miesh is
used. This explicit diffusion can be chosen to be second or
third order away from shocks. Shock detectors are used to
determine when to apply the explicit diffusion. This is a
common practice in several codes, The way to determine the
low order scheme is to assure damping of oscillations in
smooth flow and in contact discontinuities. Simple coef-
ficients, such as in Ref. [ 31, are not suitable for Lagrangian
equations, so the Zalesak method is used with appropriate
diffusion coefficients. The high order scheme is designed to
produce a minimum computing time overhead. The final
algorithm must be conservative and free stream invariant
(and with some other obvious symmetries) both in the
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Lagrangian and in the remapping phase. Next we describe
such a Lagrangian FCT staggered-mesh scheme (RMFCT)
and we apply the algorithm to 1D gasdynamics equations in
Lagrangian form. The Eulerian solution is obtained from
the Lagrangian one by applying a high order remapping
step, such as in the piecewise parabolic method {(PPM) [4]
scheme. Contrary to the original formulation, we make use
of FCT for the non-convective terms. Moreover, we design
RMFCT to give the correct results in Lagrangian coor-
dinates, where the remapping phase is a different problem
whose aspects will not be treated in detail in this article.

The hybridization procedure requires low and high order
schemes and this article is divided accordingly. Section 2
defines the low order scheme for smooth flow, obtaining the
scaling of the diffusion coefficients. Section 3 treats the addi-
tional diffusion needed near the shocks. This diffusion intro-
duces enough spreading to limit strongly the oscillations,
Section 4 describes the high order algorithm and the overall
method. A simpler alternative to the PPM remapping
scheme is pointed out. Tests are analysed in the last section.
The covergence rate for each test is given in the last section
as well.

2. LOW ORDER FLUX

Let us consider the one-dimensional Lagrangian equa-
tions in planar geometry &,V =0u, ,u= —dP, and 9, E=
—0uP, being ¥, u, P, and E£=e + $u? the specific volume,
velocity, pressure, specific total energy, and e the specific
internal energy, with &, = d/0t and d = 8/9¢ and & the mass

coordinate. We write these equations as

U+A40U=0 (1
with
0 -1 0
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and U=V, u,e). FCT is independently applied to each
conservation law. That simplifies the method, but the flux
limitation on on¢ equation could produce oscillations in
another equation. To prevent this problem, diffusive fluxes
will be obtained from the scalar equations giving an
appropriate scaling of the diffusive coefficients and the
form of the low order scheme. The transformation of the
Lagrange equations into three independent scalar equations
[5} is performed by locally diagonalising the matrix A
of the Lagrangian system ! by means of the matrix R
composed by the right eigenvectors of 4. Explicitly,

1 b 1
R=I| ¢ 0 -—¢
~f —a -—-P
—a ¢ —b
Ril:éﬁ 2P0 2
—-a —c¢ —b

A=diag(—c, 0,c)=R'4R

with a =0P/¢V and b= 0P/0e. The transformed of U is
obtained from

—adV+cdu—boe
2PoV+23de ,
—adV—-cdu—bae

- 1
ba=R"1 U=

where ¢ is the Lagrangian sound speed defined as
2 =bP—a If 3,R=0 then the equation for a is 8,0+
Ao = 0. The low order scheme is the upwind flux associated
io the signals with velocities + ¢, 0. By transforming back to
the original representation we obtain the diffusive fluxes for
vector U

| 5 —aqdV—hae
- At
=§51R }A|6a=z c? Bu
T \aP oV +bPoe

The finite difference formulation of 88/ is (U, ,— U,
0,412, where £, - is the mass coordinate of the point

it ap2s 5z= §i+ 172 ‘iiﬁ B2 &= é(éu it £ 1/2), 5;+ 1727
1(8;+ 8, 1). The fluxes for each U component are

v
F5+)|,f2 =Visiz otc;, Vi1 — V,— B 1/2(€;‘+1 —e;))

(2)
(3}

Fgu) =, 0tc;(u; 12T Uy !.,'1)

(e} — (¥
F;‘+1,f2— —Pi+lf2Fi+l,‘2

with the coeflicients v and f given by

_a 1 apP
VTR TRy
OP/de
f=bla=- aP/oV
and p=1 For a perfect gas equation of state

(P=(y—1)e/V)vand § are

v=1/2y
f="Ve.

The simplest way to determine these coeificients is assuming
v;, 1,2 to be a constant and

Bivip=(Vi 1+ V)ie, i +e)

Equations (2}-{3) define the diffusive fluxes to be added to
the high order fluxes in order to lead the low order scheme,
Since the velocity in the flux of the energy equation is the
corrected flux of the specific volutme equation, no diffusive
flux seems to be needed in this energy equation. However, if
the flux of total energy is composed with the fluxes of ¥ and
u, the entropy will be calculated without damping (up to
second order) with the low order scheme. To show that, we
suppose ¥!and E] (temporal updated values of , and E;)
are obtained from

VIi=Vi+d(F yp—Fiipn)
Esl :’_‘ef‘*)*f(PiH/zFfH/z‘Pi—l,sz'-Uz)-

(4)
(3}

Up to first order we can write V,x V+4V,, E,x E+ dE,,
Fio1ypxF+0F,, p, and P,y ;nx P+ 3P, . Because of
the translation invariance, we can take ¥ = F=0 and then
OoF = de. Multipiying (4) by P and adding {3) results in

det +PSV!=5e,+PoV,. {6)
The change in entropy S; can be expressed by
38, o de,+ PV, and, according to (6), S;=S5, up to
second order. In order to include some diffusion of the

entropy at low order, we add a flux to the internal energy
equation:

5
F = Vig 1/2;ve+ 12Ci+ 12

x{(e;r—e) + 3P + PV = V). (D

This flux spreads contact discontinuities whenever the
high order algorithm produces peaks in entropy. It is
observed in the simulations that the value of 1 can be lower
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than 0.5. In all the test performed we take u=v=018
(=1/4y for y=14) and ¢, ,,=min(c,, ¢, ;). With this
choice the diffusion coefficients depend linearly on the time
step &1, where the amount of diffusion introduced between
two fixed times is almost constant. That produces results
with slight dependence on the time step. The low order
scheme is the addition of high order and dissipative fluxes
multiplied by the mesh spacing.

Similar expressions are obtained from Roe's linearization
[6] of the Riemann problem, In that case, the coefficients
are the same that those previously calculated with a=
- %('}’ —Dle;+ e, YV, Vii) b= %(’/ ~ WVi+ Vi)
{(V.V,..),and P=1(P,+ P, ), changing the value of v.

3. ADDITIONAL DIFFUSION

With the spatial centering chosen for V, u, and e a shock
wave cannot be represented monotenically in one zone, nor
even as a initial condition. Because FCT is independently
applied to each conservation iaw, an additional term is
needed for spreading any shock wave on two or three zones.
First we define a shock detector f; that is at least second
order in smooth flow and one near shocks. Useful detectors
are

fl;'“=|Pi+1_2Pi+P|'—l|/(Pj+l+2Pi+Pi—1)

or

[ =max(0, min(L, 2(P, ., — P, J(Pip2— Pi_3)— 1))
1 L 0°PjRE
2% TapjoE

The former equation is that for adaptive diffusion [7] and
the latter one, more selective on shocks, is similar to the one
used in the PPM scheme [4]. When the flow is in expansion
we explicitly fix /,=0. In fact, f; can be dropped whenever
weak shock waves are present. In all the performed tests the
results do not change if we set f,=0 when u,_,,—
#;, 12 0.1C,. Both f, coefficients work out well in our case
but the first one is better when two shocks collide and it is
simpler to implement. The additional diffusion coefficient,
used in the examples of Section 5, is fixed to

=37 Mp2C,; + max(0, Ui 12— Uip12)h (8)
where C, is the sound speed. Similar results are obtained
with £ when the coefficient is chosen:

§:=2 i max(0, u; i~y 1p2).

Finally, the actual coefficient for the velocity equation is

(u)

g (9)

=max(g;_, L Lig1)

and for the specific volume equation

8’5?1;2-‘-'“10(35-”’, gf‘i}l) (10)

where ¢!, =g, . This diffusion term is added to the
low and high order fluxes before FCT is applied. With this
shock detector, the continuous compression errors [8] are
reduced up to second order or they are not present at all.

4. HIGH ORDER FLUXES

The first version of the algorithm was formulated with a
low phase error scheme with second order in space and time.
This type of algorithms are very unstable, where the correc-
tion coeflicients are — {5 times the diffusion of fluxes and
require a special time splitting. In consequence they are a
strong test on the procedure of hybridization. Details and
results of this method have been described elsewhere [9]. In
order to increase the accuracy of the method, we composed
a third-order approximation to the fluxes on an arbitrary
mesh. It is not possible to do that by a Taylor expansion;
furthermore, there is inconsistency between the requested
point values (fluxes) and the data of the averaged
magnitudes (mass, momentum, and energy). In fact, the
right procedure is to obtain a third-order approximation of
the fluxes (velocity and pressure) with the mean values of ¥,
u, and e [4, 10]. With the integral values, 3 V,0,, > e, §,,
and 3 u, 9, y;,weinterpolate a third-order polynomial
around £, for pressure and around &,_,,; for velocity. The
derivative of each polynomial in &, and &, _,,, respectively
gives the fluxes with third-order appreximation. These
values are

T =u ! d, 8
Ui 1p=U;_yp 3 20,1 120.40,., i—10;

( Hivyz ¥ _yp Wi gp—Hi_ap )
5;‘—1+2§i+51’+1 5[—2+25i;1+51‘

Pi=Pi~ 45, +5§,- +0,,1)
(G e} w2
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These values are the high order fluxes. For an uniform mesh,
with Df,=f,. | —2f;+ f; |, the &, and P, are reduced to

— L
Ui 12 =Yg 12— 34D 1

P_F:Pf—ﬁDP;‘a

giving fourth-order accuracy. Because the pressure is
calculated from averaged values of the density and internal
energy, this function is actually second-order accurate. For
the energy equation, values for the pressure at zone bound-
aries are requested. These values must be consistent with the
definition of kinetic energy so that the overall algorithm
should be free-stream invariant. The second-order option is

Pi+l/2:(5ipr'+1 +51’+[Pi)/(51+5i+1)

i 2 2 —
Ei=e;+3(u;, ptui_py=e+ K.

(13)
(14)

Finally, the energy equation is written as

ot - -
e;=e,—(K; “Ki)—B’(Pwuz“w1/2“P5-1/2”ig1/2)-

H

The full Lagrangian step is described in the Appendix. It is
worthwhile to point out that in the interpolation with
Egs. (11)—(12) no monotonicity constraint is applied, and
we only need point values and not the exact distribution.
The cpu time consumed by this step is almost negligible and
makes its implementation in full two-dimensional codes
easier.

If remapping is performed (as in the following tests), the
projection on a new mesh must be consistent with the dis-
tribution chosen for the fluxes resulting the interpolating
function a parabola. Two solutions are considered. The
first one is to calcuiate third-order values of p, u, and p at
boundaries from neighbour zones. The simplest form is

& 3,
PE=P+ ' = (P — P,
' ‘—6,_l+é,-+é,-+1(é.-+5,-+1‘ =)
51‘1—1 6:‘
- 3 P-‘*P.-_ - . = P:‘“Pe‘
S (P P tl))

(15)

with upper and lower signs for right and left boundaries.
The same formula is applied for the velocity, changing é, by
8 ,2- These interface values must be limited by the average
values of the adjacent zones. After that, these values are
monotonized, and a parabola is reconstructed with the
boundary and mean values. The other approach is the same
as that used in the PPM method. Both share the same
monotonicity constraint. PPM is more accurate in all the
performed tests and is globally monotonic. Because of this

better performance, the PPM projection is presently used in
every 1D test presented here. Density is interpolated in
volume coordinates; pressure and velocity are interpolated
in mass coordinates. The mass flux across zone boundaries
is determined from the density distribution and the internal
energy profile 1s obtained from the density and pressure
ones. We do not apply any interpolation or monotonicity
constraint to the total energy. Instead of that, kinetic energy
is independently remapped with the square of the velocities
without any additional correction. This procedure is com-
monly used with that in other staggered mesh codes [11].
With this interpolation, the algorithm is globally free-
stream invariant and it is in conservation form (i.e., a trans-
formation as u — u + g, x — x + at, with left-invariant p and
¢). In fact, the definitions in Eqs. (13) and (14), and the
remapping of the kinetic energy are chosen to verify this
property. Finally the contact discontinuity detection algo-
rithm is not applied whenever shock waves are detected, Le.,
fi=0.

5. RESULTS

Tests on RMFCT have been performed on one-dimen-
sional cartesian problems. In the three cases analysed, the
time step is fixed to 0.4 times the Courant limit and the diffu-
sion coefficients and contact discontinuity parameters are
also common.

Solutions for the Riemann problem (Sod's test) are
shown in Fig. 1 for 100 Eulerian numerical zones at time
0.141 {44 time steps). The exponent of the convergence rate
(L' error) is reported for higher times (2.820) with wall
boundary conditions at x=0 and x=1. It allows several
interactions between waves, making the test more signifi-
cant. The reference solution is the Lagrangian one with a

TABLE]

Initial Conditions for the Each Test

Initial internal Problem Convergence
Test densities energy time raie
Sod 10 2.5 ¢.141 105
0.125 20
Blast wave 10 2500 0.038 0.98
1.0 0.025
1.0 250
Explasion 1.29 001 74718 %107 F 097
1.29 2.7349/8 x 10®
1.29 001
Note. All conditions are performed with constant mesh space 4, time

step of (4 times the Courant limit, wall boundary conditions, and perfect
gas EOS with y = 1.4, The exact solution to measure the convergence rate
{L! error) is the Lagrangian one with 2 high number of zones {2 12001
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FIG. 1. Results on the Sod's test with 100 Eulerian zones. Exact zone averaged solution is plotted in continuous line.
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FIG. 2. Density and velocity profiles for 200 (points) and 1200 (line} Lagrangian zones, at times 0.016 and 0.02, for the blast wave test [127].
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FIG. 3. Density and velocity profiles for 200 (points) and 1200 {line) Lagrangian zones, at times 0.028 and 0.30, for the blast wave test [127.
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FIG. 4. Density and velocity profiles for 200 (points) and 1200 (line) Lagrangian zones, at times 0.033 and 0.038, for the blast wave test [12].
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high number of zones (1800), which is remapped at the final
time over the actual mesh.

The blast wave problem [12] is initially two independent
Riemann problems (see Table ), with two shock waves
traveling toward the center. These two shocks collide at

-1 0.028 and a new contact discontinuity is produced with
two emerging shocks. In Lagrangian calculations numerical
problems could arise in the region around this contact dis-
continuity. RMFCT gives accurate results (see Figs. 2-4)in
this region and we take as an exact solution the Lagrangian
results with 1200 zones. This result is projected (via PPM
interpolation} at time 0.038 on the Eulerian mesh. With
these values we measure the error (Fig.5) of the
Eulerian + Lagrangian (remapping at each time step)
solutions,

The error depends strongly on the contact discontinuity
detector built in the PPM projection, but the convergence
rate is hardly affected. The highest loss in accuracy is
observed in the (wo leftmost contact discontinuities (with
the higher jump in density) and in the region between the
first contact discontinuity and the shock wave. If the inter-
nal energy is directly remapped with the same coefficients
for the contact discontinuity detector as in the PPM
method, the error on the density decreases dramatically for
RMFECT. However, in that case, the velocity and pressute
around the contact discontinuity on the left side osciliates
on three zones during the whole simulation,

33

RFCT

0.02 — PPMLR
@ mMJsCL
ETB-CT
0.01 1 . 1
200 400 BOO 1200
F1G. 5. Errors of several algorithms on the {(Eulerian) blast wave

problem. Errors of ETBFCT, MUSCL, and PPMLR are taken from [12].
A linear adjustment is chosen for each algorithm. The error ¢ is measured
ase=(1/N) 2 |p,— p¥| with p* the Lagrangian solution with 1200 zones.

For the present remapping step the solution of this
problem for the velocity profile is erroneous for the expan-
sion fan at the left. This error (4%) is produced at early
times on the left side of the first contact discontinuity and is
not effectively damped. This can be observed at the leftmost
zones {Fig. 8) at 1 =0.038 and does not appear in the pure

‘_.ﬂ:
i I T
489 ,_1
>
- 3.30— !
1
z
w
o
1.4 |
5.1 | I p
0.00 2.49 4,98 .y 5.6
POSITION 37

TirE= 3.81E-02

FIG. 6. Density distribution of the blast wave test with 200 Eulerian zones. The 1200 Lagrangian solution, taken as exact, is plotted for comparison.
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FIG. 7. Density distribution of the blast wave test with 1200 Eulerian zones. The 1200 Lagrangian solution is plotted for comparison.

'IOI

1.3 I , '[

VELQCITY

s

0.0 i 1 )

0.00 z.50 .93 7.89 JEX:
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FIG. 8. Velocity distribution of the blast wave test with 1200 Eulerian zones. A large error can be observed near to x = 0, which is reminiscent of
an gvershoot in the initial times,
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1
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FIG. 9. Evolution of left boundary pressure for the explosion test [13]. Lagrangian (L) and Eulerian (E) results are plotted for 1320 and 165 zones.
The leftmost curve is the exact solution. Shock wave velocity is a 4% error even in the more accurate (Lagrangian) solution,

1.5
1 ] I
5.8 - _
>
- o34 -
[%]
z
V5]
O
1.90% _
oo
9.04 1 : 1
000 0.6z 1.65 z.a7 3.3
TIME= 7.19E-05 POSITION ‘1o

FI1G. 1), Comparison between two Eulerian solutions of the density profile with 1320 and 165 zones at time 7.18 x 1077 for the explosion [137 test.
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FIG. 1. Comparison between two Eulerian solutions of the velocity profile with 1320 and 165 zones at time 7.18 x 10~ for the explosion [13] test.

Lagrangian case. With Eulerian mesh, the density profile is
slightly affected {see Figs.& to 8) by this error, so the
convergence rate remains high.

In the explosion test [13] a finite amount of energy is
released in the point x =0.1. The initial internal energy of
the gas is set to 0.01, instead of zero as in the original
problem. At early times, two shocks of infinite strength
travel outward the explosion point. At 1=2.17x 107 the
leftward traveling shock collides against the wall located at
x=0. The reflected shock reaches the explosion point at
t=4.17, and two new shocks emerge. We compare the
results of boundary pressure (Fig. 9}, shock velocity, and
the density and velocity profiles (Figs. 10, 11) at time
7.1718 x 1077 with the exact and the fine-mesh solutions.

The high temperature region (infinite in the exact solu-
tion) is spread over a large distance even in the case of 1330
Eulerian zones. The density and velocity profiles at the final
time do not seem to be affected by this spread, but the
arrival time for the shock wave striking the left boundary is
in 4% of error in the best case. This error is 8% for 165
zones indicating either poor convergence rate for this
magnitude or not convergence at all. There is another error
associated with the density near the left wall at x=0. This
error increases with the spreading of the shock wave [8],
and it is common to almost any numerical method. Finally,
the minimum density in the explosion point (zero in the

exact solution} is, in the best case, around 0.01. RMCFT
does not allow zero density poinis.

Computer time for the remapping step is similar to that of
the PPM scheme, but the Lagrangian step is much faster,
similar to the original FCT scheme, where most of the
calculation time comes from the flux correction step.
According to L' efrors and cpu time, RMCFT is not com-
petitive with the PPM in terms of the time consumed for a
fixed error because of the remapping phase. However, for
the Lagrangian phase, no Riemann solver is required in this
step so that the schem s appropriate for more complicated
conservation laws. Because there is no monotonicity
constraint in the interpolation, full 2D extensions are
easier, and a higher accuracy is obtained at virtually no time
overhead. Finally, the implementation of the method in
classical Lagrangian codes does not change the centering of
the variables, the program flow, or the equation of state
normally used.

6. CONCLUSION

We have described an impiementation of FCT on a
Lagrangian code with staggered mesh. Diffusion coefficients
are obtained in order to damp osciilations even in the
entropy distribution. An additionai diffusion 1s recognised
as necessary near the shocks. As an example, a third-order
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algorithm is used in two stringent tests both in Eulerian and
Lagrangian coordinates. The overall method verifies
conservation and free stream invariance, giving good
convergence rate in the blast wave test and good behaviour
around shocks. Better projection methods are under study
to prevent the errors pointed out in the tests,

APPENDIX A: FULL LAGRANGIAN PHASE

Let be L(F, G, f} the FCT hybridization given by [2]

Ly ipF G ) =FepiptGiyip—Skyip
-max(0, min(|G,, ),
PLARTYAPEY
Ses 17286 3= Fr-1))

with
Sk =91g0{Gy 1 )2}

szfk+ (Fevipt Grpin—Fo i\ p— G 1p)d,.

With &, , as defined in (11), P, as defined in (12), and F{*
as defined in (3), the first step is

ot
F?:E’(—Pi"‘g?“’(uwuz‘“r‘—lﬁ}) (16)
Fi=L,(F", F*, u) (17)
”.!'131/2:”.'4-1124'(F,C-H_F:)/éwlﬂ (18)
2
*— _ 2 e
P TRk "

With i, |, as defined in (11) and F” as defined in (2) the
next step is

ot .
Ff"+ u2=3(u;fr/z+g,(-m(yr+1 ) (20)
F{ i p=Lip(FLFY, V) (21)
Vxl'/z= V.+ (Ff+ lfz‘Ff— 1/2)/6:' (22)

* 2 o
“i+1/2=EF.'+uz- (23)

With P, |, as defined (13), X, in (14} and F%

ivi210 (7), the
internal energy is obtained from

ot
F?+1/2=E(—u?‘+1,fzpf+uz+g}V](eml—ef)) (24)
er'*:‘-’i_(K.'uz_Ki)'f'(F?+1/2_F:I— 1,'2)/‘5,' (25)
Cp=Liv (0, F'), e%) (26)
e.!/z:f-’i*‘f'(F§+1/2_F€—1/1)/‘5s (27}
PIR=P(V]7, ), (28)

In the last step we calculate u],_,, changing 31+ 26t in
Egs. (16)-(19), and recalculate w7 n =31}, o+ #,11p0)
and then V] and e! from {19)~(28).
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